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Abstract — Recently, Kernel Additive Modelling was proposed as a new framework for
performing sound source separation. Kernel Additive Modelling assumes that a source
at some location can be estimated using its values at nearby locations where nearness is
defined through a source-specific proximity kernel. Different proximity kernels can be
used for different sources, which are then separated using an iterative kernel backfitting
algorithm. These kernels can efficiently account for features such as continuity, stability
in time or frequency and self-similarity. Here, we show that Kernel Additive Modelling
can be used to generalise, extend and improve on a widely-used harmonic/percussive
separation algorithm which attempts to separate pitched from percussive instruments.
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I Introduction

Harmonic/Percussive (H/P) separation of mixed
audio signals deals with attempting to separate
pitched (harmonic) instruments from percussion
instruments, which can be loosely modelled as
different types of broadband noise. H/P separa-
tion has numerous applications including remix-
ing and DJing, as well as a preprocessing tool
for other tasks including automatic music tran-
scription, chord estimation, and key signature de-
tection. In these applications, the elimination of
the percussive sources allows improved estimation
of the pitched content, while elimination of the
pitched sources allows improved results in applica-
tions such as rhythm analysis, beat tracking, and
the automatic transcription of drum instruments.

In recent years, different techniques have been
proposed for the purpose of H/P separation.
Among these, a number of algorithms are based on

the intuition that harmonic instruments form sta-
ble horizontal ridges across time in spectrograms,
while percussive instruments form stable vertical
ridges across frequency due to their broadband
noise-based nature. This is illustrated in Figure 1,
where the harmonics are clearly visible as hori-
zontal lines, while the drums are visible as ver-
tical lines in the spectrogram. Algorithms exploit-
ing this include those based on anisotropic diffu-
sion [1], as well as others based on Bayesian mod-
els of this assumption [2]. Of particular interest
in our context is the algorithm proposed in [3],
based on median filtering of spectrograms. In the
present paper, we extend the algorithm presented
in [3] in order to refine separation through several
iterations and to account for multichannel mix-
tures. The proposed method fits in the recently
proposed Kernel Additive Modelling (KAM, [4, 5])
framework for source separation and is consistently
shown to improve over the original method [3].
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Fig. 1: Spectrogram of Pitched and Percussive Mixture.

The paper is structured as follows. In a back-
ground section II, we recall the original H/P sep-
aration procedure [3] and briefly present the re-
cently KAM framework. In section III, we detail
the proposed harmonic/percussive separation al-
gorithm and finally evaluate it in section IV.

II Background

a) H/P Separation with median filtering

The algorithm proposed in [3] focuses on single
channel mixtures. It assumes that vertical lines
in a spectrogram correspond to percussion events,
while horizontal lines are typically associated with
the harmonics of pitched instruments. In this case,
peaks due to pitched harmonics can be regarded as
outliers on the vertical lines associated with per-
cussion events. Similarly, peaks due to the per-
cussion events can be regarded as outliers on the
horizontal lines associated with pitched harmonic
instruments. The algorithm goes as follows.

Let boldfaced xxx denote the power spectrogram
of a monochannel mixture. It is a Nf ×Nt matrix,
where Nf and Nt respectively stand for the num-
ber of frequency bands and the number of frames.
We define xxx (f, ·) as the f th frequency slice con-
taining the values of the f th frequency bin across
time. Similarly, we define xxx (·, t) as the tth time
frame. As median filters are good at eliminating
outliers, then median filtering each time frame will
suppress harmonics in this frame resulting in a per-
cussion enhanced frame sssP (·, t), while median fil-
tering each frequency slice will suppress percussion
events in this slice, yielding a harmonic-enhanced
slice sssH (f, ·):

sssP (·, t) = M{xxx (·, t) , lperc} (1)

sssH (f, ·) = M{xxx (f, ·) , lharm} (2)

where M denotes median filtering, and where lperc
and lharm are the median filter lengths used to

generate the percussion enhanced frames and har-
monic enhanced slices respectively. sssP and sssH are
then used to generate Wiener-filter type masks to
apply to the original complex valued spectrograms
before inversion to the time domain.

b) Kernel Additive Modelling

Kernel Additive Modelling (KAM) is a recently
proposed framework for performing source sep-
aration [4, 5]. In contrast to well-established
paradigms for separation, such as Non-negative
Tensor Factorisations (NTF) [6], which perform
a global decomposition based on superposition of
fixed patterns or basis functions of the underlying
sources, KAM focuses on the underlying regulari-
ties of the sources to separate them from mixtures.
In the context of audio source separation, the hu-
man ability to discriminate between sources in a
mixture has been shown to depend on local fea-
tures such as repetitivity, common fate and conti-
nuity [7]. These dynamic features can be seen as
depending on local regularities concerning the evo-
lution of sources over time, frequency and space,
rather than on fixed global patterns or basis func-
tions corresponding to NTF-based approaches.

To model these reqularities within the spectro-
grams of the sources, KAM uses kernel local para-
metric models which have their roots in local re-
gression [8]. In the audio case, it is assumed that
the value sssj (f, t) of the spectrogram of a source
j at a given TF point (f, t) is close to its values
as other time-frequency bins given by a source-
specific proximity kernel Ij (f, t) [5]:

∀ (f ′, t′) ∈ Ij (f, t) , sssj (f, t) ≈ sssj (f ′, t′) , (3)

where Ij (f, t) is a set containing the nearest neigh-
bours of (f, t) from the perspective of source j.
These kernels can be built using a variety of man-
ners including the use of suitable feature spaces.

Different sources can then be modelled with dif-
ferent proximity kernels Ij , and the KAM frame-
work offers a large degree of flexibility in the in-
corporation of prior knowledge about the local dy-
namics of the sources to be separated. Separa-
tion of additive sources is then achieved through
a variant on the backfitting algorithm [9]. Many
popular audio separation algorithms can be viewed
as special cases of the KAM framework including
Adress [10], DUET [12], REPET [11] and the har-
monic/percussive separation algorithm described
in Section a). Furthermore, KAM provides an ef-
fective way to generate new source separation al-
gorithms for sources which can be characterised by
local features. A more detailed explanation of the
framework can be found in [4, 5].
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III Model and Method

a) Notation and Model

The mixture audio signal x̃ is a set of I time series,
with x̃(n, i) denoting the value of the ith channel
of the mixture at sample n. In most popular music
I = 2 for stereo signals, or 1 for mono recordings.
The mixture is then assumed to be the sum of J
sources s̃j :

x̃(n, i) =

J∑
j=1

s̃j(n, i) (4)

We then define x and {sj}j=1···J as the Short-Time
Fourier Transforms (STFT) of the mixture and the
J sources respectively. These are all tensors of
size Nf × Nt × I. sj(f, t) is then an I × 1 vector
containing the values of the STFTs of source sj at
time-frequency bin (f, t).

Assuming a Local Gaussian Model [13] each
sj(f, t) are taken as independent vectors, each dis-
tributed according to a multivariate centered com-
plex Gaussian distribution:

∀(f, t), sj(f, t) v Nc(0, sssj(f, t)Rj(f)) (5)

where boldfaced sssj ≥ 0 is a nonnegative scalar that
indicates the energy of source j at time-frequency
bin (f, t). It is called the spectrogram of source j in
the remaining of this paper1. Rj is a complex I×I
positive semidefinite matrix, which is called the
spatial covariance matrix of source j at frequency
band f . It encodes the covariance between the
different channels of sj at frequency band f . Since
the mixture x(f, t) is the sum of J independent
random Gaussian vectors, it is distributed as:

∀(f, t), x(f, t) v Nc

0,

J∑
j=1

sssj(f, t)Rj(f)

 (6)

If estimates of sssj and Rj are available (termed ŝssj
and R̂j respectively), then the Minimum Mean-
Squared Error estimates ŝj of the STFTs of the
sources are obtained from:

ŝj (f, t) = ŝssj (f, t) R̂j

 J∑
j=1

ŝssj (f, t) R̂j (f)

−1 x (f, t)

(7)

The source time-domain signals can then be ob-
tained via inverse STFT.

Prior knowledge about the sources to be sepa-
rated is then encoded in terms of a proximity ker-
nel Ij(f, t) for each source, which indicates which

1sj (f, t) and x (f, t) are hence complex I × 1 vectors,
while boldfaced sssj (f, t) is a nonnegative scalar. Rj(f) is a
complex I × I matrix. All estimates are denoted ·̂

Algorithm 1 Kernel backfitting for multichannel
audio source separation with locally constant spec-
trogram models and binary proximity kernels.

1. Input:

• Mixture STFT x (f, t)

• Neighbourhoods Ij (f, t).

• Number N of iterations

2. Initialisation

• n← 1

• ∀j, ŝssj (f, t)← x (f, t)
?
x (f, t) /IJ

• Rj (f)← I × I identity matrix

3. Compute estimates ŝj of all sources using (7)

4. For each source j:

(a) Cj (f, t)← ŝj (f, t) ŝj (f, t)
?

(b) R̂j (f)← I
Nt

∑
t

Cj(f,t)

tr(Cj(f,t))

(c) zzzj (f, t)← 1
I

∑
t tr
(
R̂j (f)

−1
Cj (f, t)

)
(d) ŝssj (f, t)←

median {zzzj (f ′, t′) | (f ′, t′) ∈ Ij (f, t)}

5. If n < N then set n← n + 1 and go to step 3

6. Output:
sources spectrograms ŝssj and spatial covari-

ance matrices R̂j (f) to use for filtering (7).

time-frequency points have values close to that of
sssj , as in (3). If we assume that sssj is not observed
directly but only through possibly very noisy es-
timates zzzj as is the case in practice, then sssj is
estimated as:

ŝssj(f, t) = argmin
sssj(f,t)

∑
(f ′,t′)∈Ij(f,t)

Lj(zzzj(f, t) | sssj(f, t))

(8)

where Lj(zzzj |u) is the model cost function for
source j as defined in [4]. In our context, it is
the cost of choosing sssj(f, t) = u when its noisy ob-
servation is zzzj . In this case we choose Lj to be the
absolute deviation as the observations are likely to
be contaminated by outliers during the iterative
backfitting process described below, and the abso-
lute deviation is known to yield estimates that are
robust to the presence of outliers. We have:

ŝssj(f, t) =

argmin
sssj(f,t)

∑
(f ′,t′)∈Ij(f,t)

|zzzj(f, t)− sssj(f, t)| (9)
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This cost function is minimised by:

ŝssj(f, t) = median(zzzj(f, t)|(f ′, t′) ∈ Ij(f, t)) (10)

The kernel backfitting algorithm proposed in [4]
for estimation of the source spectrograms ŝssj pro-
ceeds in an iterative manner, with separation and
estimation of the parameters performed alterna-
tively. Here, the spectrograms zzzj(f, t) of the cur-
rent estimates of the source STFTs ŝj are used
as noisy observations of the true value with re-
estimation of ŝssj achieved through median filtering.
The kernel backfitting procedure is summarised in
algorithm 1, where ·? denotes conjugate transpose
and tr(·) denotes the trace of a square matrix. De-
tails on the re-estimation procedure for the spatial
covariance matrices can be found in [13].

b) Harmonic/Percussive Separation using KAM

The harmonic/percussive separation algorithm de-
scribed in section II can be viewed as an instance of
KAM. To describe this algorithm within the KAM
framework we define the proximity kernel Ij(f, t)
for the percussive source as:

IP (f, t) = {(f + p, t) | p = −l, . . . , l} (11)

where 2l + 1 = lperc, as defined in equation (1), is
the total number of frequency bins in the neigh-
bourhood. We similarly define the proximity ker-
nel for the harmonic source as:

IH (f, t) = {(f, t + p) | p = −k, . . . , k} (12)

where 2k+1 = lharm, as defined in equation (2), is
the number of time frames in the neighbourhood.

It can clearly be seen that defining the proximity
kernels in such a manner results in median filtering
being applied to the same sets of time-frequency
points as those in equations 1 and 2, and so the
algorithm described in section II can be seen as
a single iteration of KAM where the spatial co-
variance matrices R̂j (f) are fixed to the identity
matrix which in effect forces each of the mixture
channels to be modelled independently. It can be
seen that KAM generalises on this algorithm by
allowing iterative updating of the sources, and by
the inclusion of a spatial model for the sources. It
is proposed to investigate if the iterative updating
of sources and the inclusion of the spatial model re-
sults in improved harmonic/percussive separation.

IV Evaluation

In order to test the effectiveness of the proposed
KAM algorithm for H/P separation, a database
of 10 test signals was created using excerpts from
multitrack recordings where the percussion and
all other instruments were available as individual
recordings. Percussion-only mixes and Pitched in-
strument mixes (including vocals) were prepared,

and used to create an overall mix for each track.
These were then separated using the proposed H/P
KAM algorithm. These recordings had a sample-
rate of 44.1kHz.

To allow direct comparison to the algorithm
in [3] an FFT size of 4096 samples, a hopsize of
1024 samples, lperc = lharm = 17 were used, en-
suring that the parameters used were the same as
the original algorithm. To investigate the effects
of the iterative backfitting procedure, the separa-
tion performance was evaluated after each itera-
tion, with the total number of iterations set to 10.
This number was used as previous work on KAM
indicated that the backfitting procedure requires
only a small number of iterations to converge.

Further, to identify how much improvement in
performance was due to the backfitting procedure
and how much was due to the spatial model, evalu-
ation was also carried out on a version of the algo-
rithm where R̂j (f) is fixed to the identity matrix
for all iterations. In this case, the results for iter-
ation 1 are equivalent to those obtained from the
algorithm proposed in [3], and so this represents a
baseline from which improvements in performance
using KAM can be measured against. Audio ex-
amples and MATLAB code for the algorithm can
be found at the paper’s webpage2

Separation performance was measured using
metrics from the PEASS toolkit [14]. The met-
rics considered are the Overall Perceptual Score
(OPS), which attempts to provide an overall in-
dication of the separation quality, the Target-
related Perceptual Score, which attempts to mea-
sure how the spatial position of the separated
source corresponds to that of the original source,
the Interference-related Perceptual Score (IPS),
which attempts to measure the amount of inter-
ference from other sources present in the separated
source, and the Artifact-related Perceptual Score,
which measures the presence of artifacts in the sep-
arated source. All these metrics have ranges from
0-100 with higher scores being better.

These metrics are plotted in Figures 2-5, with
red indicating the use of the spatial model and
black indicating the spatial model was not used,
with R̂j (f) fixed to unity throughout all itera-
tions. Figure 2 shows the average results obtained
from all 10 excerpts for the OPS for percussive
separation (left) and harmonic separation (right)
plotted against iteration number.

It can be seen that initially the use of the
iterated approach in KAM results in significant
improvements in OPS over the baseline algo-
rithm, which consisted of a single iteration. How-
ever, at higher iteration numbers performance falls
off. This is particularly evident for the harmonic
sources, where 2 iterations gives a large increase

2www.loria.fr/~aliutkus/kamhp/
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Fig. 2: Overall Perceptual Score for Percussive (left) and
Harmonic (right) separations. Red indicates the use of the
spatial model, while black indicates the spatial model was

not used.

Fig. 3: Target related Perceptual Score for Percussive
(left) and Harmonic (right) separations. Red indicates the
use of the spatial model, while black indicates the spatial

model was not used.

in performance, followed by a large drop in perfor-
mance with subsequent iterations. In contrast, the
performance for percussion separation keeps in-
creasing up until iteration 5, before starting to fall
off. This suggests that to achieve optimal separa-
tion of the percussive and harmonic parts, different
numbers of iterations should be used, but that if a
balance between separation quality of both sources
is desirable, then 2 iterations is optimal. Also of in-
terest is that the spatial model seems to have only
minor effects on the OPS, resulting in slightly im-
proved performance for the percussive sources for
most iteration numbers, but giving slightly poorer
performance for the harmonic sources.

It should also be noted that the phenomenon
of falling OPS scores at higher number of itera-
tions is not specific to KAM and also occurs with
NTF-based methods [15]. This highlights a dis-
tinction between numerical convergence and per-
ceptual quality of the separated sources obtained

from the algorithms, and is an area that needs fur-
ther research in sound source separation in general.

Fig. 4: Interference related Perceptual Score for Percussive
(left) and Harmonic (right) separations. Red indicates the
use of the spatial model, while black indicates the spatial

model was not used.

Fig. 5: Artifact related Perceptual Score for Percussive
(left) and Harmonic (right) separations. Red indicates the
use of the spatial model, while black indicates the spatial

model was not used.

With respect to the TPS, shown in Figure 3, it
can be seen that there is a constant drop with in-
creasing iteration numbers, with the spatial model
and non-spatial model results being very similar
for the percussive sources. In contrast, the use
of the spatial model results in a increase in TPS
over the non-spatial model for harmonic sources.
The IPS values, shown in Figure 4 show the exact
opposite trends to those in Figure 3, with IPS in-
creasing constantly with iteration number. Again,
the results for percussive separation are very simi-
lar regardless of whether the spatial model is used
or not, while for the harmonic separation, the spa-
tial model results in decreased separation perfor-
mance. This suggests there is a trade-off in the al-
gorithm between accurate spatial estimation of the
harmonic source and the amount of interference

ha
l-0

10
00

00
1,

 v
er

si
on

 1
 - 

4 
Ju

n 
20

14



from the percussive source which remains in the
harmonic source. Finally, the APS, shown in Fig-
ure 5 again shows a constant drop with iteration
number, with similar results achieved regardless
of the presence or otherwise of the spatial model.
This shows that the spatial model has had little ef-
fect in reducing artifacts in the separated signals.

With respect to computation time, the KAM
H/P Separation algorithm is still very computa-
tionally efficient, if 2 iterations are used, then run-
time was approximately a third of the excerpt du-
ration on a modern laptop computer, but was 1.7
times real-time for 10 iterations. It should be
noted that this was using an unoptimised version
of median filtering, and that increased speed can
be achieved by implementing the median filtering
in a manner similar to that described in [16].

V Conclusions

In this paper we have shown how a newly-proposed
framework for source separation can be used to
generalise and improve on an existing H/P Sep-
aration algorithm. This new framework, termed
Kernel Additive Modelling models sources through
local regularities in their spectrograms. Individual
time-frequency bins in these spectrograms are as-
sumed to be close in value to other bins nearby
in the spectrogram, where nearness is defined
through a source-specific proximity kernel. Sep-
aration is then performed using the kernel back-
fitting algorithm. The performance of the KAM
H/P separator improves on the original median-
filtering based H/P separation algorithm, which
can be viewed as a single iteration of the KAM al-
gorithm when the spatial model is omitted. This
shows the utility of the KAM framework for the de-
velopment of sound source separation algorithms.
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